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Variation of Soil Microbial Community Structure and 

Activity along Ecohydrological Gradients 



Mycorrhizosphere and C cycle 

• Rhizosphere = major sink for photo-assimilated C and hot-spot for microbial 

activity 

• Microbes allocate assimilated C to growth, respiration or metabolite 

(enzyme) production, with consequences for soil C stabilization and nutrient 

cycling 

• Tracking photosynthate into and through the soil microbial community and 

plant-microbe dynamics has become a topic of wide interest for 

understanding ecosystem functioning (plant growth, C and N cycling) in a 

changing environment 
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Temporal variation in wetland vegetation 

0-40% of total plant C => belowground 



Temporal variation in wetland hydrology 



Study objectives 

The objective of this work was 

to study variations in microbial 

communities active in 

rhizodeposit-C assimilation as 

a function of time and space in 

wetlands of Belgium and 

Poland. 

Microbial community structure 
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= a specific microbial community  



13C in soil biota 

After 1 day: 13C-PLFA GC-c-IRMS 

(Gas Chromatography-combustion-

Isotope Ratio Mass Spectrometry) 

13CO2 

13C in roots + exudates 

Active portion of the microbial community relying on rhizodeposit C 

Methodology: PLFA based SIP 

 - Cell membrane lipids 

 - Rapidly hydrolysed upon cell death 

      

 

Fingerprint of the ‘living’ soil microbial community 

PLFA 



PLFAs ‘specific’ for different microbial communities 

Introduction 



CO2 monitor (EGM-4 PP systems) 

 

Plexiglass chamber 

Tubes carrying gas to 
the monitor fans Stainless-steel frame 



Case study I: Temporal variations in hydrology 

                    13CO2 pulse labeling 

 

Sampling after 24h => short term 

rhizodeposit 13C uptake. 



Relative 13C concentration 

Non-specific 

bacteria 

 

Gram-positive 

bacteria 

 

Actino-

mycetes 

 

G-negative 

bacteria 

 

AM 

fungi 

 

sapro 

fungi 

 

Some PLFAs vary in their efficiency to assimilate 13C, other don’t 

 Low 13C labelling of by gram-positive bacteria and actinomycetes 



Relative 13C concentration 

1. Permutation tests 

showed a 

significant effect of 

time (P=0.02) on 
13CCr. 

2. Separation 

between microbial 

communities 

involved in 13C 

assimilation 

between April-June 

and October 

3. Indicator species 

analysis: 

saprotrophic fungi 

in April, AMF in 

June, bacteria in 

October.  

 

Gram-negative 

bacteria 

(methanotrophs, 

Fe-reducing 

bacteria, etc.) 

AMF and 

fungi 

Fungi 

(or G-) 

April, June and October samples are 

represented by □, ∆ and ○, respectively; 



Case study II: Bierbza wetlands in Poland 

Study of three wetlands: 
PLFA-SIP and tracing 13CO2 in microbial 

communities one day after labeling. 

 

 

Gram-negative bacteria 

and fungi vary most in their 
13C uptake at a spatial 

scale in the landscape 

 

 



Case study II: Biebrza wetlands in Poland 

Fertility, productivity, DOC contents 

Poor fen  Low sedge fen        Tall sedge fen 

DOC 
DOC DOC 

7.3 7.6 8.1 

Water & 

nutrient 

regime 

N 0.42 0.45 0.50 

Net δ13C 
Net δ13C 

Net δ13C 

76‰ 43‰ 24‰ 



Case study III: recycling of 13C within microbial communities 

• Microbes rapidly take up rhizodeposit C (within hours/days) suggesting 

tight coupling between microbial and plant activity 

• What happens next? What is the fate of 13C present in the PLFAs? 

 

MRT: 110d (gram+) 

         100d (gram-) 

MRT: 3d (all fungi) 



Case study III: recycling of 13C within microbial communities 



Conclusions 

• Microbes rapidly take up rhizodeposit C (within hours/days) 

suggesting tight coupling between microbial and plant 

activity 

• Allocation of plant assimilates to microbes is linked to plant 

physiology and environmental factors  

• Most rapid uptake of rhizodeposit C by selective 

communities, though varies with plant, soil and 

environmental factors 

• (symbiotic) fungi appear to play a key role in channeling 

rhizodeposit-C to the soil microbial community 

• Large proportion of microbial-assimilated rhizodeposit-C may 

remain in biomass due to active recycling through the soil 

food web, and is further stabilized in microbial 

necromass/metabolites 

• Rhizodeposition affects specific communities involved in key 

carbon and nitrogen transformation processes. 
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